Strategic Analytics for NATO Supply Chain Operations

14th NATO OR&A Conference Colonel Greg H. Parlier, USA ret 5-6 October 2020

gparlier@knology.net

256.457.9782

Public Releasable

1

Capacity, Inventory, and Knowledge

Substitutable Ingredients of Enterprise System Performance

Strategic Analytics: Foundational Building Blocks

Information Technologies Decision Support Systems The Internet of Things Engineering Systems Dynamic Strategic Planning Engines for Innovation Analytical Architectures

Information Technologies vs. Decision Support Systems

- Dynamic Strategic Logistics Planning
- Sustainment Early Warning System

4

Enterprise Resource Planning

Internet of Things (IoT): Early Warning Systems

MIT Engineering Systems Division (ESD)

Enterprise (Engineering) Systems

Some Definitions:

An emerging way to think about how to model, analyze, and design large-scale, complex, socio-technical systems.

An effort to better integrate engineering with management science,

the social sciences, and the humanities.

- A class of systems characterized by a high degree of technical complexity, social intricacy, and elaborate processes, aimed at fulfilling important functions in society.
- Enterprise engineering is the body of knowledge, principles, and practices to design an enterprise.
- An Enterprise is a complex, socio-technical system that comprises interdependent resources of people, information, and technology that must interact with each other and their environment in support of a common mission.

An emerging field at the intersection of engineering, management, and the social sciences.

Traditional Strategic Planning

Dynamic Strategic Planning

Engines for Innovation (Efl)

Analytical Architectures

Goal: **Improve Logistics Chain Efficiency and Effectiveness** to Enable a Strategically Responsive, Transforming Army **Improve Strategic Objectives: Reduce Lead Time** Reduce **Reduce Costs Mobility; Reduce Demand & System Sustainment** While Maintaining **Force Closure** Readiness Variability 'Footprint' Timelines Performance Measures: (MOEs, 'Metrics') ■ **A**₀ • A₀ ■ A₀ ■ A₀ ************ Readiness $\mathbf{A}_{\mathbf{o}}$ **Outcome:** 11 **Public Releasable**

Linking Strategy to Measurable Results

SUPPLY AND OPERATIONS MANAGEMENT COLLECTION Steven Nahmias, Editor

Transforming U.S. Army Supply Chains

Strategies for Management Innovation

Greg H. Parlier

Reasons for the Book (from Preface):

1. Resurrect traditional Operations Research (OR) for the US Army. 2. Apply "advanced analytics" to our materiel enterprise challenges. 3. Link operational, technical, educational, scientific, and analytical communities. 4. Demonstrate "Management Innovation as a Strategic Technology". 5. Document a case study for: analytically-driven, transformational change; a comprehensive, collaborative effort by many contributors.

Transforming US Army Supply Chains: Strategies for Management Innovation

Aligning Supply to Readiness-Driven Demand in the Materiel Sustainment Enterprise

Supply Variability and Demand Uncertainty: Army Supply Chain Model

Supply Chain Framework: Organization, Process, and Information "Views" of the Materiel Enterprise

Mission Demand

Operation Type/Duration

Environmental Conditions

Force Size/Composition

Center for Systems Reliability Readiness & Sustainment Department Sandia National Laboratories (SNL) Albuquerque, NM 87185

Public Releasable

Duilling out

Innovation Catalyst: Mission-Based Forecasting (MBF)

Research Goal:

Our major hypothesis states: "If empirically-derived Class IX usage patterns, profiles and/or trends can be associated with various operational mission types and environmental conditions, then operational planning, demand forecasting, and budget requirements can be significantly improved to support a capabilities based force".

🗖 02 - Airframe
■ 03 - Landing gear
□ 04 - Power plant installation
□ 05 - Rotor system
■06 - Drive system
07 - Hydraulics/Pneudraulics
08 - Instrument system
09 - Electrical installation
■10 - Fuel system
11 - Flight control system
□12 - Utility system
13 - Environmental control system
■14 - Hoists and winches
■15 - Auxiliary power plant
16 - Mission equipment
17 - Emergency equipment
19 - Avionics
□ 30 - Armament sub system
□ 31 - Fire control sub system
□ 32 - Hellfire sub system
■ 33 - TADS (Target Acquisition Designation Sight) assemb
■ 34 - PNVS (Pilot Night Vision Sensor) assembly
□ 35 - Area weapons system
■ 36 - Other weapons systems
■ 37 - Fire control/radar
38 - Symbol generation
■ 39 - IHADSS (Integrated Helmet and Display Sighting Sys
■ 52 - Auto pilot system
76 - Electronics countermeasures

■ 82 - Flyaway items

■ 02 - Airframe ■ 03 - Landing gear □ 04 - Power plant installation □ 05 - Rotor system 06 - Drive system ■ 07 - Hydraulics/Pneudraulics 08 - Instrument system 09 - Electrical installation. 10 - Fuel system ■11 - Flight control system □ 12 - Utility system 13 - Environmental control system 14 - Hoists and winches 15 - Auxiliary power plant 16 - Mission equipment 17 - Emergency equipment 19 - Avionics □ 30 - Armament sub system □ 31 - Fire control sub system □ 32 - Hellfire sub system 33 - TADS (Target Acquisition Designation Sight) assemb ■ 34 - PNVS (Pilot Night Vision Sensor) assembly ■ 35 - Area weapons system □ 36 - Other weapons systems 37 - Fire control/radar ■ 38 - Symbol generation ■ 39 - IHADSS (Integrated Helmet and Display Sighting Sys

- 52 Auto pilot system
- 76 Electronics countermeasures
- 82 Flyaway items

■ 02 - Airframe
■ 03 - Landing gear
□ 04 - Power plant installation
□ 05 - Rotor system
■06 - Drive system
07 - Hydraulics/Pneudraulics
08 - Instrument system
09 - Electrical installation
■10 - Fuel system
11 - Flight control system
□12 - Utility system
13 - Environmental control system
■14 - Hoists and winches
■15 - Auxiliary power plant
■16 - Mission equipment
17 - Emergency equipment
19 - Avionics
□ 30 - Armament sub system
□ 31 - Fire control sub system
□ 32 - Hellfire sub system
■ 33 - TADS (Target Acquisition Designation Sight) assemb
■ 34 - PNVS (Pilot Night Vision Sensor) assembly
∎ 35 - Area weapons system
□ 36 - Other weapons systems
■ 37 - Fire control/radar
38 - Symbol generation
■ 39 - IHADSS (Integrated Helmet and Display Sighting Sys
■ 52 - Auto pilot system

- 76 Electronics countermeasures
- 82 Flyaway items

Measuring Forecast Accuracy: Reducing Error Sources

Improving Forecast Accuracy: Reduces Forecast Errors, Increases Readiness, Reduces Excess, and Minimizes Burden

AH-64D Parts Count Forecast (Breadth of NSNs): MBF Compared to Current Methods

Case 3, Stability Ops (mid-level threat), 12 months, 104 tails

AH-64D Parts Quantity Forecast (Depth of NSNs): MBF Compared to Actual On-Hand Stocks

Phase 2 Cost (Parts) - Case 3

Intermittent Demand

Professional Judgment

Moving Avg/Exponential Smoothing

Poisson Methods (Croston)

ID Specific: Smart-Willemain

Ongoing Research

Varieties of Intermittent Demand

Output of Markov Bootstrap

Prognostic Demand

Condition Based Maintenance (CBM)

"Connecting" CBM to the Supply Chain

Remaining Useful Life (RUL)

"Connecting" CBM to the Supply Chain: A Mathematical View

Benefits of "Connecting" CBM to Forward Supply Chain

Contributes to Achieving Cost-Wise Readiness

CBM Prognostics Simulation Model – Initial Results

Calibrated using actual 2410 data for AH-64D Nose Gear Box

Sustainment Enterprise IoT: Connecting CBM+ to the Supply Chain

Logistics Readiness Early Warning System

An "Engine for Innovation": The Center for Innovation in Logistics Systems (CILS)

"Optimizing" the System: Applying a Dynamic (Multi-Stage) Programming Model

10.4 DEVELOPING AN OPTIMAL DECISION POLICY

If our multistage system actually looks like the one just illustrated, then we can notice some interesting characteristics; namely.

- 1. There are exactly N points at which a decision must be made.
- 2. If we star at stage 1, then nothing affects an optimal decision except the knowledge of the state of the system at stage 1 and the choice of our decision variable.
- 3. Stage 2 only affects the decision at stage 1; the choice we make at stage 2 is governed only by the *state* of the system at stage 2 and the restrictions on our decision variable.
- 4. And so on to stage N.

The dynamic programming problem is therefore given by the following expression at the nth stage:

$$f_{n}^{*}(S_{n}) = \max_{0 \le d_{n} \le [S_{n}/L_{n}]} \{r_{n}(S_{n}, d_{n}) + f_{n-1}^{*}(S_{n-1})\}$$

where: $S_{n-1} = S_{n} - d_{n}L_{n}$
and $f_{0}^{*}(S_{0}) \equiv 0$
 $f_{n}(S_{n}, d_{n}) = r_{n}d_{n}$
 $n = 1, 2, 3, 4$

Sustaining Innovation While Linking Execution to Strategy

Chapter 20: Strategic Analytics & the Future of Military OR

Applications to Present Challenges:

Resource Planning for National Security

Transforming Defense Supply Chains

Human Capital Enterprise

SERIES IN OPERATIONS RESEARCH

HANDBOOK OF MILITARY AND DEFENSE OPERATIONS RESEARCH

Edited by Natalie M. Scala James P. Howard, II

https://www.taylorfrancis.com/books/e/9780429467219

<u>A.D. 80</u>

<u>A.D. 2020</u>

Strategic Analytics for NATO Supply Chain Operations

14th NATO OR&A Conference Colonel Greg H. Parlier, USA ret 5-6 October 2020

gparlier@knology.net

256.457.9782